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ABSTRACT

Let Ky be the maximal real subfield of the field generated by the p-th root
of 1 over Q, and Koo be the basic Z,-extension of Ky for a fixed odd prime
p- Let K, be its n-th layer of this tower. For each n, we denote the Sylow
p-subgroup of the ideal class group of K, by Ay, and that of E, /Cy, by By,
where E, (resp. Cp) is the group of units (resp. cyclotomic units of Kn. In
section 2 of this paper, we describe structures of the direct and inverse limits
of By. The direct limit, in particular, is shown to be a direct sum of A copies
of p-divisible groups and a finite group M, where ) is the Iwasawa A-invariant
for Koo over Kp. In section 3, we prove that the capitulation of A, In Ay, is
isomorphic to M for m > n 3> 0 by using cohomological arguments. Hence
if we assume Greenberg’s conjecture (A = 0), then Ay, is isomorphic to By for
n> 0.
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1. Introduction

Fix an odd prime p. For each n > 1, let (= be a primitive p"-th root of 1
such that (:,,+1 = (pn. Let K = Q(Cpr+r + C;.+,) so that Koo = Up>oKy is
the basic Zy-extension of Ko. Let E, (resp. Cy) be the group of units (resp.
cyclotomic units) of K,. We denote the p-part of the ideal class group of K,,
by A, and that of E,/C, by B,. There seem to be more conjectures than facts
about the behaviour of A,. For instance, Vandiver’s conjecture says that A = 0
and Greenberg’s conjecture says that A, is bounded as n — oo, or equivalently,
the Iwasawa A-invariant of K, /ko equals zero. It is even unknown whether or
not the natural map jn.;m : An — Am is injective for m > n. Let C, ,, be the
kernel of j,.m.

In this paper, we will identify Cj » with a subgroup of B;, for m 3> n >> 0.
This, in particular, will imply A, ~ B, for n > 0 as groups if Greenberg’s
conjecture holds. For this, we describe the structure of B, in section 2. It is
interesting that B, behaves in an opposite way to A,. Namely, for m > n, the
norm map Nmn : Am — A, is surjective, but the natural map jn.;m : Bn = Bn
is injective. Moreover, the injectivity of the natural map j,.m : Ap — Ap is
equivalent to the surjectivity of the norm map Ny, n : Bjyn — Byp. In section 3,
we apply cohomological arguments to the structure of B, to identify C,. . with
a subgroup of B, for m > n > 0.

2. Structure of A,, and B,

The structure of A,, is well known [2]:
(1) limAn ~ 23 & C,
(2) Ap ~®L,Z/p"*%Z D C for n >0,
3) li_I}lAn ~(Qp/2,)*,
for some finite group C and for some integers aj,az,:-- ,ax, where X is the
Iwasawa A-invariant for K., /K. Here the limits are taken under the norm
maps (for (1)) and jn.m (for (3)). For m > n > 0, since C =~ Cy, 1 is the kernel
of jn.m, it disappears in the direct limit (3). On the other hand, since the norm
map is surjective by class field theory, C remains in the inverse limit (1).

We analyse the structure of B,, similarly.

THEOREM 1:

(1) kimB, ~ Z),

2y B, ~0L,Z/p"t"Z o M,
(3) IEIIBn ~(Qs/Z,)* & M,
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for some integers by,bs,--- ,by and for some finite group M, where )\ is the
Iwasawa A-invariant.

Proof: For m > n > 0, the natural map jn.m : Bn — By, is injective [1]. Let T
be the torsion part of liinB,,. Then T is a finite group by the Iwasawa theory on
the structure of A-modules. Hence if we take s large enough, Gal (K /K,) acts
trivially on 7. Suppose X = (29,21,...) is an element of T, and so pV X = 0
for some N > 0. For each n > s, take m such that m —n > N. Then

jn.m(mn) = jn.m o Nm.n(zm)

= :c,,z.: ”, where the summation is taken for all ¢ € Gal(K,n/K,)
=zP " since each ¢ acts trivially on =
=0.

Since jp.m is injective, we have z, = 0. Since this is true for all n > s, X
must be 0. Hence T = 0 and hmBn is torsion free. So llmBn ~ Z’ for some
integer r. But, by the analytic class number formula or by the main conJecture
which is now a theorem, hinA,. and h.x_nB,. have the same Z,-rank. Therefore
r = A = Iwasawa A-invariant. This proves (1)'. (2)' follows from the fact that
BGm-n = B, which will be proved in section 3. Finally (3)' follows from the
injectivity of j, m and (2)'.

REMARK: From (1) and (2), we see that Ny o By ~ 0 ,Z/p"t%Z = B, /M
form>n > 0.

3. Main theorem

In section 2, we found two finite groups C and M: C from the structure of A4,
and M from that of B,. In this section we prove that they are isomorphic. First
we list some known results about the (Tate) cohomology groups [1], [3].

(i) CGmn» = C,, EGmr» = E,

(i) H(Gm.n,Cm) =0, H(Gm.n,Cm) ~ Z/p™ *Z,

(iii) H*(Gm.ny Em) = C', H'(Gmon, Em) ~Z/p™ "Z & C,

where C is the kernel of j, ,» for m >> n >> 0 and C' is some finite group of
the same order as C. Also, we have the following cohomology groups for B,,.

PROPOSITION: Form » n >0, H'(Gm.n,Bm) ~ M ~ H (G n,Bm).

Proof: We claim that the map H*(Gm.n,Cm) = H'(Gm.n, Em) induced by the

inclusion Cyy, — Ey, is injective. We have a generator 72! for H!(Gn.n,Cr),
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where T = (1—(pm+1)(1~ ;':+l) and o is a generator of G, . Henceif 727! is
mapped to the zero element of H!(Gy n, Em), then 757! = n°~! for some unit
n € Kpu. Therefore we have m,, = na, for some a, € K,. As ideals, we have
(mm) = (an), which is impossible since (7, ) is the only totally ramified prime
ideal in K,,, above p. From the short exact sequence 0 — C,, - E;, — By, — 0,
we get an exact sequence

0 — Cgm'n - Egm'" - Bgm'" - Hl(Gm.mCm) - H‘(Gm.mEm)
1~ l~
Cn E,

Since the last map is injective, we obtain an exact sequence
0—)C,,—>En—)Bg"‘-" - 0.

Therefore Bém» ~ E,/C, ~ B,. On the other hand, by the remark at the
end of section 2, Nyp.n Bm ~ ®X,Z/p"*%Z. Hence H*(Gm.n, Bm) ~ M. Since
B, is a finite group, the Herbrand quotient for By, is 1, s0 H'(Gm.n, Bm) has
the same order as M. But since G, acts trivially on M for n >> 0, M is a
subgroup of H'(Gm.n, Bm). Therefore HY(Gm.n, Bm) ~ M.

THEOREM 2: C ~ M.

Proof: From the exact sequence 0 - C,, — Ep, — B, — 0 and from the
argument in the proof of the previous proposition, we have

0 — H'(Gm.n,Cm) = H (Gmony Em) = H' (Gm.n, Bm) — 0.
By taking the direct limit under the inflation maps, we obtain
0-Q,/2, - Q;/Z,6C > M —0.
But a homomorphism from Q,/Z, to a finite group must be a zero map. Hence

we conclude C ~ M.

A

G = 2;\=] b;, where a;’s and b;’s are the integers appearing

COROLLARY: 3,
in section 2.

Proof: It follows immediately from Theorem 2 and the fact that #(A,) = #(B,)
for alln > 0.
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COROLLARY: Suppose A <1, then A, ~ B, for n >> 0.

Proof: Obvious.

REMARK: It is unknown whether or not A, ~ B, in general. The last corollary
answers this problem affirmatively in special cases. In particular, if Greenberg’s
conjecture is true, then A, ~ B, for sufficiently large n. The authors do not
know whether A,, ~ B,, for all n even assuming the Greenberg’s conjecture. One
can also ask for generalizations of our results to the case when the base field K
is replaced by Q((pa)* with p { d. For this direction [4] might be helpful.
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