CYCLOTOMIC UNITS IN \mathbf{z}_{p} -EXTENSIONS

BY

JAE MOON KIM*

Department of Mathematics, Inha University, Inchon, 402-751, Korea

AND

SUNGHAN BAE**

Department of Mathematics, Korea Institute of Technology, Taejon, 305-701, Korea

AND

IN-SOK LEE**

Department of Mathematics, Seoul National University Seoul, 151-742, Korea

ABSTRACT

Let K_0 be the maximal real subfield of the field generated by the *p*-th root of 1 over \mathbb{Q} , and K_{∞} be the basic \mathbb{Z}_p -extension of K_0 for a fixed odd prime *p*. Let K_n be its *n*-th layer of this tower. For each *n*, we denote the Sylow *p*-subgroup of the ideal class group of K_n by A_n , and that of E_n/C_n by B_n , where E_n (resp. C_n) is the group of units (resp. cyclotomic units of K_n . In section 2 of this paper, we describe structures of the direct and inverse limits of B_n . The direct limit, in particular, is shown to be a direct sum of λ copies of *p*-divisible groups and a finite group M, where λ is the Iwasawa λ -invariant for K_{∞} over K_0 . In section 3, we prove that the capitulation of A_n in A_m is isomorphic to M for $m \gg n \gg 0$ by using cohomological arguments. Hence if we assume Greenberg's conjecture ($\lambda = 0$), then A_n is isomorphic to B_n for $n \gg 0$.

^{*}This paper was supported in part by a research fund for junior scholars, Korea Research Foundation

^{**} The present studies were supported in part by the Basic Science Research Institute program, Ministry of Education, 1989.

Received October 14, 1990 and in revised form April 25, 1991

1. Introduction

Fix an odd prime p. For each $n \geq 1$, let ζ_{p^n} be a primitive p^n -th root of 1 such that $\zeta_{p^{n+1}}^p = \zeta_{p^n}$. Let $K_n = \mathbf{Q}(\zeta_{p^{n+1}} + \zeta_{p^{n+1}}^{-1})$ so that $K_{\infty} = \bigcup_{n\geq 0} K_n$ is the basic \mathbf{Z}_p -extension of K_0 . Let E_n (resp. C_n) be the group of units (resp. cyclotomic units) of K_n . We denote the p-part of the ideal class group of K_n by A_n and that of E_n/C_n by B_n . There seem to be more conjectures than facts about the behaviour of A_n . For instance, Vandiver's conjecture says that $A_0 = 0$ and Greenberg's conjecture says that A_n is bounded as $n \to \infty$, or equivalently, the Iwasawa λ -invariant of K_{∞}/k_0 equals zero. It is even unknown whether or not the natural map $j_{n.m}: A_n \to A_m$ is injective for m > n. Let $C_{n.m}$ be the kernel of $j_{n.m}$.

In this paper, we will identify $C_{n,m}$ with a subgroup of B_n for $m \gg n \gg 0$. This, in particular, will imply $A_n \simeq B_n$ for $n \gg 0$ as groups if Greenberg's conjecture holds. For this, we describe the structure of B_n in section 2. It is interesting that B_n behaves in an opposite way to A_n . Namely, for m > n, the norm map $N_{m,n}: A_m \to A_n$ is surjective, but the natural map $j_{n,m}: B_n \to B_m$ is injective. Moreover, the injectivity of the natural map $j_{n,m}: A_n \to A_m$ is equivalent to the surjectivity of the norm map $N_{m,n}: B_m \to B_n$. In section 3, we apply cohomological arguments to the structure of B_n to identify $C_{n,m}$ with a subgroup of B_n for $m \gg n \gg 0$.

2. Structure of A_n and B_n

The structure of A_n is well known [2]: (1) $\lim_{\leftarrow} A_n \simeq \mathbf{Z}_p^{\lambda} \oplus C$, (2) $A_n \simeq \oplus_{i=1}^{\lambda} \mathbf{Z}/p^{n+a_i} \mathbf{Z} \oplus C$ for $n \gg 0$, (3) $\lim_{\leftarrow} A_n \simeq (\mathbf{Q}_p/\mathbf{Z}_p)^{\lambda}$, for some finite group C and for some integers $a_1, a_2, \cdots, a_{\lambda}$, where λ is the Iwasawa λ -invariant for K_{∞}/K_0 . Here the limits are taken under the norm

Iwasawa λ -invariant for K_{∞}/K_0 . Here the limits are taken under the norm maps (for (1)) and $j_{n.m}$ (for (3)). For $m \gg n \gg 0$, since $C \simeq C_{n.m}$ is the kernel of $j_{n.m}$, it disappears in the direct limit (3). On the other hand, since the norm map is surjective by class field theory, C remains in the inverse limit (1).

We analyse the structure of B_n similarly.

THEOREM 1: (1)' $\lim_{\leftarrow} B_n \simeq \mathbf{Z}_p^{\lambda}$, (2)' $B_n \simeq \bigoplus_{i=1}^{\lambda} \mathbf{Z}/p^{n+b_i} \mathbf{Z} \oplus M$, (3)' $\lim_{\leftarrow} B_n \simeq (\mathbf{Q}_p/\mathbf{Z}_p)^{\lambda} \oplus M$, for some integers $b_1, b_2, \dots, b_{\lambda}$ and for some finite group M, where λ is the Iwasawa λ -invariant.

Proof: For $m > n \ge 0$, the natural map $j_{n.m}: B_n \to B_m$ is injective [1]. Let T be the torsion part of $\lim_{K \to 0} B_n$. Then T is a finite group by the Iwasawa theory on the structure of \wedge -modules. Hence if we take s large enough, Gal (K_{∞}/K_s) acts trivially on T. Suppose $X = (x_0, x_1, ...)$ is an element of T, and so $p^N X = 0$ for some N > 0. For each n > s, take m such that m - n > N. Then

$$j_{n.m}(x_n) = j_{n.m} \circ N_{m.n}(x_m)$$

= $x_m^{\sum \sigma}$, where the summation is taken for all $\sigma \in \text{Gal}(K_m/K_n)$
= $x_m^{p^{m-n}}$ since each σ acts trivially on x
= 0.

Since $j_{n,m}$ is injective, we have $x_n = 0$. Since this is true for all n > s, X must be 0. Hence T = 0 and $\lim_{n \to \infty} B_n$ is torsion free. So $\lim_{n \to \infty} B_n \simeq \mathbf{Z}_p^r$ for some integer r. But, by the analytic class number formula or by the main conjecture which is now a theorem, $\lim_{n \to \infty} A_n$ and $\lim_{n \to \infty} B_n$ have the same \mathbf{Z}_p -rank. Therefore $r = \lambda = \operatorname{Iwasawa} \lambda$ -invariant. This proves (1)'. (2)' follows from the fact that $B_m^{G_{m,n}} = B_n$ which will be proved in section 3. Finally (3)' follows from the injectivity of $j_{n,m}$ and (2)'.

REMARK: From (1)' and (2)', we see that $N_{m,n}B_m \simeq \bigoplus_{i=1}^{\lambda} \mathbb{Z}/p^{n+b_i}\mathbb{Z} = B_n/M$ for $m \gg n \gg 0$.

3. Main theorem

In section 2, we found two finite groups C and M: C from the structure of A_n and M from that of B_n . In this section we prove that they are isomorphic. First we list some known results about the (Tate) cohomology groups [1], [3]. (i) $C_m^{G_{m,n}} = C_n$, $E_m^{G_{m,n}} = E_n$ (ii) $H^0(G_{m,n}, C_m) = 0$, $H^1(G_{m,n}, C_m) \simeq \mathbb{Z}/p^{m-n}\mathbb{Z}$, (iii) $H^0(G_{m,n}, E_m) = C'$, $H^1(G_{m,n}, E_m) \simeq \mathbb{Z}/p^{m-n}\mathbb{Z} \oplus C$,

where C is the kernel of $j_{n,m}$ for $m \gg n \gg 0$ and C' is some finite group of the same order as C. Also, we have the following cohomology groups for B_m .

PROPOSITION: For $m \gg n \gg 0$, $H^1(G_{m.n}, B_m) \simeq M \simeq H^0(G_{m.n}, B_m)$.

Proof: We claim that the map $H^1(G_{m,n}, C_m) \to H^1(G_{m,n}, E_m)$ induced by the inclusion $C_m \to E_m$ is injective. We have a generator $\pi_m^{\sigma-1}$ for $H^1(G_{m,n}, C_m)$,

where $\pi_m = (1 - \zeta_{p^{m+1}})(1 - \zeta_{p^{m+1}}^{-1})$ and σ is a generator of $G_{m.n}$. Hence if $\pi_m^{\sigma-1}$ is mapped to the zero element of $H^1(G_{m.n}, E_m)$, then $\pi_m^{\sigma-1} = \eta^{\sigma-1}$ for some unit $\eta \in K_m$. Therefore we have $\pi_m = \eta \alpha_n$ for some $\alpha_n \in K_n$. As ideals, we have $(\pi_m) = (\alpha_n)$, which is impossible since (π_m) is the only totally ramified prime ideal in K_m above p. From the short exact sequence $0 \to C_m \to E_m \to B_m \to 0$, we get an exact sequence

Since the last map is injective, we obtain an exact sequence

$$0 \to C_n \to E_n \to B_m^{G_{m,n}} \to 0.$$

Therefore $B_m^{G_{m,n}} \simeq E_n/C_n \simeq B_n$. On the other hand, by the remark at the end of section 2, $N_{m,n}B_m \simeq \bigoplus_{i=1}^{\lambda} \mathbb{Z}/p^{n+b_i}\mathbb{Z}$. Hence $H^0(G_{m,n}, B_m) \simeq M$. Since B_m is a finite group, the Herbrand quotient for B_m is 1, so $H^1(G_{m,n}, B_m)$ has the same order as M. But since $G_{m,n}$ acts trivially on M for $n \gg 0$, M is a subgroup of $H^1(G_{m,n}, B_m)$. Therefore $H^1(G_{m,n}, B_m) \simeq M$.

THEOREM 2: $C \simeq M$.

Proof: From the exact sequence $0 \to C_m \to E_m \to B_m \to 0$ and from the argument in the proof of the previous proposition, we have

$$0 \to H^1(G_{m.n}, C_m) \to H^1(G_{m.n}, E_m) \to H^1(G_{m.n}, B_m) \to 0.$$

By taking the direct limit under the inflation maps, we obtain

$$0 \to \mathbf{Q}_p / \mathbf{Z}_p \to \mathbf{Q}_p / \mathbf{Z}_p \oplus C \to M \to 0.$$

But a homomorphism from $\mathbf{Q}_p/\mathbf{Z}_p$ to a finite group must be a zero map. Hence we conclude $C \simeq M$.

COROLLARY: $\sum_{i=1}^{\lambda} a_i = \sum_{i=1}^{\lambda} b_i$, where a_i 's and b_i 's are the integers appearing in section 2.

Proof: It follows immediately from Theorem 2 and the fact that $\#(A_n) = \#(B_n)$ for all $n \ge 0$.

COROLLARY: Suppose $\lambda \leq 1$, then $A_n \simeq B_n$ for $n \gg 0$.

Proof: Obvious.

REMARK: It is unknown whether or not $A_n \simeq B_n$ in general. The last corollary answers this problem affirmatively in special cases. In particular, if Greenberg's conjecture is true, then $A_n \simeq B_n$ for sufficiently large n. The authors do not know whether $A_n \simeq B_n$ for all n even assuming the Greenberg's conjecture. One can also ask for generalizations of our results to the case when the base field K_0 is replaced by $\mathbf{Q}(\zeta_{pd})^+$ with $p \nmid d$. For this direction [4] might be helpful.

References

- 1. R. Gold and J. M. Kim, Bases for cyclotomic units, Compositio Math. 71 (1989), 13-28.
- M. Grandet et J.-F. Jaulent, Sur la capitulation dans une Z_l-extension, J. für Mathematik 362 (1985), 213-217.
- 3. K. Iwasawa, On \mathbb{Z}_l -extensions of algebraic number field, Ann. of Math. (2) 98 (1973), 246-326.
- 4. J. M. Kim, Cohomology groups of cyclotomic units, J. Algebra, to appear.
- 5. J.-P. Serre, Local fields, G.T.M. 67, Springer-Verlag, Berlin, 1979.
- 6. L. Washington, Introduction to cyclotomic fields, G.T.M. 83, Springer-Verlag, Berlin, 1980.